ເມື່ອປຽບທຽບກັບ oxyacetylene ແບບດັ້ງເດີມ, plasma ແລະຂະບວນການຕັດອື່ນໆ, ການຕັດ laser ມີຂໍ້ດີຂອງຄວາມໄວຕັດໄວ, slit ແຄບ, ເຂດຜົນກະທົບຄວາມຮ້ອນຂະຫນາດນ້ອຍ, verticality ດີຂອງ slit, ຂອບຕັດກ້ຽງ, ແລະຫຼາຍປະເພດຂອງວັດສະດຸທີ່ສາມາດຕັດດ້ວຍ laser. . ເຕັກໂນໂລຊີການຕັດ laser ໄດ້ຖືກນໍາໃຊ້ຢ່າງກວ້າງຂວາງໃນຂົງເຂດຂອງລົດໃຫຍ່, ເຄື່ອງຈັກ, ໄຟຟ້າ, ຮາດແວແລະເຄື່ອງໃຊ້ໄຟຟ້າ.
ອີງຕາມຄໍາສັ່ງຂອງນາຍົກລັດຖະມົນຕີລັດເຊຍ Mikhail Mishustin, ລັດຖະບານລັດເຊຍຈະຈັດສັນ 140 ຕື້ຮູເບີນໃນໄລຍະ 10 ປີສໍາລັບການກໍ່ສ້າງເຄື່ອງເລັ່ງເລເຊີ synchrotron ໃໝ່ ແຫ່ງທໍາອິດຂອງໂລກ SILA. ໂຄງການດັ່ງກ່າວຮຽກຮ້ອງໃຫ້ມີການກໍ່ສ້າງສາມສູນລັງສີ synchrotron ໃນລັດເຊຍ.
ນັບຕັ້ງແຕ່ການປະດິດ laser semiconductor ທໍາອິດຂອງໂລກໃນປີ 1962, laser semiconductor ໄດ້ມີການປ່ຽນແປງຢ່າງຫຼວງຫຼາຍ, ຢ່າງຫຼວງຫຼາຍສົ່ງເສີມການພັດທະນາວິທະຍາສາດແລະເຕັກໂນໂລຊີອື່ນໆ, ແລະຖືວ່າເປັນຫນຶ່ງໃນສິ່ງປະດິດຂອງມະນຸດທີ່ຍິ່ງໃຫຍ່ທີ່ສຸດໃນສະຕະວັດ twentieth. ໃນສິບປີທີ່ຜ່ານມາ, lasers semiconductor ໄດ້ພັດທະນາຢ່າງໄວວາແລະໄດ້ກາຍເປັນເຕັກໂນໂລຢີເລເຊີທີ່ເຕີບໂຕໄວທີ່ສຸດໃນໂລກ. ລະດັບຄໍາຮ້ອງສະຫມັກຂອງ lasers semiconductor ກວມເອົາພາກສະຫນາມທັງຫມົດຂອງ optoelectronics ແລະໄດ້ກາຍເປັນເຕັກໂນໂລຊີຫຼັກຂອງວິທະຍາສາດ optoelectronics ມື້ນີ້. ເນື່ອງຈາກຂໍ້ດີຂອງຂະຫນາດຂະຫນາດນ້ອຍ, ໂຄງປະກອບການງ່າຍດາຍ, ພະລັງງານຂາເຂົ້າຕ່ໍາ, ຊີວິດຍາວ, modulation ງ່າຍແລະລາຄາຕ່ໍາ, lasers semiconductor ໄດ້ຖືກນໍາໃຊ້ຢ່າງກວ້າງຂວາງໃນຂົງເຂດ optoelectronics ແລະໄດ້ຮັບການຕີລາຄາສູງຈາກປະເທດຕ່າງໆໃນທົ່ວໂລກ.
ເລເຊີ femtosecond ແມ່ນອຸປະກອນຜະລິດ "ultrashort pulse light" ທີ່ປ່ອຍແສງພຽງແຕ່ເປັນເວລາສັ້ນໆປະມານນຶ່ງກິກເຊວິນາທີ. Fei ແມ່ນຕົວຫຍໍ້ຂອງ Femto, ຄໍານໍາຫນ້າຂອງລະບົບສາກົນຂອງຫນ່ວຍງານ, ແລະ 1 femtosecond = 1 × 10^-15 ວິນາທີ. ອັນທີ່ເອີ້ນວ່າແສງກໍາມະຈອນ emits ແສງສະຫວ່າງພຽງແຕ່ສໍາລັບທັນທີ. ເວລາປ່ອຍແສງຂອງແຟລດຂອງກ້ອງຖ່າຍຮູບແມ່ນປະມານ 1 ໄມໂຄວິນາທີ, ສະນັ້ນ ແສງກໍາມະຈອນສັ້ນສຸດຂອງ femtosecond ພຽງແຕ່ປ່ອຍແສງປະມານໜຶ່ງຕື້ຂອງເວລາຂອງມັນ. ດັ່ງທີ່ພວກເຮົາທຸກຄົນຮູ້, ຄວາມໄວຂອງແສງແມ່ນ 300,000 ກິໂລແມັດຕໍ່ວິນາທີ (7 ແລະເຄິ່ງຫນຶ່ງເປັນວົງຮອບໂລກໃນ 1 ວິນາທີ) ດ້ວຍຄວາມໄວທີ່ບໍ່ມີໃຜທຽບເທົ່າ, ແຕ່ໃນ 1 femtosecond, ເຖິງແມ່ນວ່າແສງສະຫວ່າງຈະກ້າວຫນ້າພຽງແຕ່ 0.3 microns.
ທີມງານຂອງອາຈານ Rao Yunjiang ຂອງຫ້ອງທົດລອງທີ່ສໍາຄັນຂອງ Optical Fiber Sensing ແລະການສື່ສານຂອງກະຊວງສຶກສາທິການ, ວິທະຍາໄລວິທະຍາສາດເອເລັກໂຕຣນິກແລະເຕັກໂນໂລຊີຂອງປະເທດຈີນ, ໂດຍອີງໃສ່ເຕັກໂນໂລຊີການຂະຫຍາຍພະລັງງານ oscillation ຕົ້ນຕໍ, ຮັບຮູ້ເປັນຄັ້ງທໍາອິດ multimode fiber random ກັບ. ພະລັງງານອອກຂອງ > 100 W ແລະຄວາມຄົມຊັດຂອງ speckle ຕ່ໍາກວ່າຂອບເຂດການຮັບຮູ້ speckle ຕາຂອງມະນຸດ. Lasers, ມີຂໍ້ດີທີ່ສົມບູນແບບຂອງສິ່ງລົບກວນຕ່ໍາ, ຄວາມຫນາແຫນ້ນຂອງ spectral ສູງແລະປະສິດທິພາບສູງ, ຄາດວ່າຈະຖືກນໍາໃຊ້ເປັນການຜະລິດໃຫມ່ຂອງແຫຼ່ງແສງສະຫວ່າງທີ່ມີພະລັງງານສູງແລະຕ່ໍາທີ່ສອດຄ່ອງກັນສໍາລັບການຮູບພາບທີ່ບໍ່ມີ speckle ໃນ scenes ເຊັ່ນ: ພາກສະຫນາມເຕັມແລະ. ການສູນເສຍສູງ.
ສໍາລັບເທກໂນໂລຍີສັງເຄາະ spectral, ການເພີ່ມຈໍານວນຂອງ laser sub-beams ສັງເຄາະແມ່ນຫນຶ່ງໃນວິທີທີ່ສໍາຄັນທີ່ຈະເພີ່ມກໍາລັງການສັງເຄາະ. ການຂະຫຍາຍຂອບເຂດ spectral ຂອງ lasers ເສັ້ນໄຍຈະຊ່ວຍເພີ່ມຈໍານວນຂອງ laser sub-beams ສັງເຄາະ spectral ແລະເພີ່ມພະລັງງານສັງເຄາະ spectral [44-45]. ໃນປັດຈຸບັນ, ລະດັບການສັງເຄາະ spectrum ທີ່ໃຊ້ທົ່ວໄປແມ່ນ 1050~1072 nm. ການຂະຫຍາຍໄລຍະຄວາມຍາວຂອງຄື້ນຂອງເລເຊີເສັ້ນໄຍເສັ້ນແຄບລົງເປັນ 1030 nm ແມ່ນມີຄວາມສຳຄັນຫຼາຍຕໍ່ເທັກໂນໂລຢີການສັງເຄາະສະເປກທຣັມ. ເພາະສະນັ້ນ, ສະຖາບັນການຄົ້ນຄ້ວາຈໍານວນຫຼາຍໄດ້ສຸມໃສ່ການໄລຍະຄື້ນສັ້ນ (ຄື້ນຄວາມຍາວຫນ້ອຍກ່ວາ 1040 nm) ເສັ້ນແຄບ lasers ເສັ້ນໄຍກວ້າງໄດ້ຮັບການສຶກສາ. ເອກະສານນີ້ສ່ວນໃຫຍ່ແມ່ນສຶກສາເລເຊີເສັ້ນໄຍ 1030 nm, ແລະຂະຫຍາຍໄລຍະຄວາມຍາວຂອງຄື້ນຂອງແສງຍ່ອຍເລເຊີທີ່ສັງເຄາະ spectrally ເປັນ 1030 nm.
ສະຫງວນລິຂະສິດ @ 2020 Shenzhen Box Optronics Technology Co., Ltd. - China Fiber Optic Modules, Fiber Coupled Lasers manufacturers, Laser Components Suppliers ສະຫງວນລິຂະສິດທຸກປະການ.